歡迎來到http://www.tljciu.live !
當前位置:六六工程資料網建筑課堂工程資料建筑工程技術預應力混凝土軌枕的裂縫及結構耐久性

預應力混凝土軌枕的裂縫及結構耐久性

09-20 16:17:32  瀏覽次數:604次  欄目:建筑工程技術
標簽:工程技術,建筑設計, 預應力混凝土軌枕的裂縫及結構耐久性,http://www.tljciu.live

  摘  要:本文綜述了從七十年代至九十年代對預應力混凝土軌枕裂縫的調查情況,從物理、力學、化學的角度分析了裂縫的成因。根據國內外文獻,并結合對預應力混凝土軌枕的調查和試驗研究結果,分析了裂縫對軌枕結構和耐久性的影響,提出了混凝土軌枕裂縫的防止與控制措施

  關鍵詞:預應力,混凝土,軌枕,裂縫,堿集料反應,耐久性

  引言

  中國預應力混凝土軌枕從研究、生產到推廣應用,歷時四十年,產量逾億根,鋪設里程累計達七萬公里,與世界各國采用混凝土軌枕相比,數量上占有很大比例。使用三十余年來,混凝土軌枕發生了不少損傷,涉及到行車安全,從而經常考慮傷損軌枕是否應從運營線路上換下。但要換上新的軌枕,除要重新制造外,還要裝卸,運輸并到線路上進行換枕工作,·不僅需耗費大量人力物力,有時還會影響行車,其耗費往往是一根軌枕本身造價的四到五倍。

  在使用三十余年來,拆換下的傷損軌枕,除了少量是由于行車、裝卸事故等造成的機械性破損外,絕大部分則是由于產生各種各樣的裂縫,擔心其影響軌枕承載能力而被拆換的。

  軌枕作為一種預應力混凝土結構,裂縫是難避免的,因此研究預應力混凝土軌枕裂縫的成因及其危害性,研究如何預防和控制裂縫,對提高混凝土軌枕的結構耐久性,延長軌枕的使用壽命,將是十分重要的。

  l 混凝土軌枕裂縫的類型及表現

  1.1 混凝土枕裂縫的類型

  1.1.1 軌下垂直橫向裂縫(軌下正彎矩裂縫)

  這種裂縫出現在軌枕兩側下部,一般情況下,裂縫較小,寬度在0.1mm以下,長度未超過中和軸。1981年對筋69、弦69等軌枕調查結果表明,鋼軌接頭處的軌枕,其軌下垂直裂縫比例為60%;而鋼軌大腰處的軌下垂直裂縫比例,筋69和弦69分別為37%和20%。

  1.1.2 枕中垂直(橫向)裂縫(枕中正彎矩和負彎矩裂縫)

  1981 年調查的69型軌枕(1971—1976年間生產),筋69軌枕枕中正彎矩裂縫分別為34%和11%(不同區段),弦69枕中裂縫分別為36%和13% (不同區段)。裂縫的寬度及長度均比軌下裂縫嚴重,有的枕中正負彎矩裂縫連在一起形成環向裂縫,個別軌枕有多道環向裂縫。 1991年調查的S—2 (1986年生產)軌枕,枕中垂直裂縫約占調查裂縫軌枕的23.7%,其中鋼軌接頭處的軌枕,枕中垂直裂縫比率更高,占63%以上。

  1.1.3 軌枕頂面螺栓孔縱向裂縫

  這種裂縫通常從螺栓孔處為起點逐漸向軌枕中部和端部延伸,有的一直裂到端部,造成劈裂,嚴重者裂縫寬達3~5mm.1975年及1981年調查的69型軌枕,沿螺栓孔縱裂的數量隨不同制造廠家和不同區段而有所不同。沿釘孔縱裂軌枕占調查軌枕總數的比例分別是0%、18%、20%、40%、48%等。 1991年調查Ⅱ型軌枕共193889根,傷損軌枕有18682根,傷損率為9.6%,頂面沿螺栓孔縱裂占全部傷損軌枕的33.8%。總之,軌枕頂面沿螺栓孔縱裂是預應力混凝土軌枕最為普遍存在的裂縫,不僅運營數年的軌枕有,存在路邊備用的軌枕有,

  甚至未出廠的軌枕也有;不僅國內軌枕有,就連國外的軌枕也有。例如1975~1976年生產并鋪設于坦贊鐵路的預應力混凝土軌枕,1977年筆者在坦贊鐵路考察時發現沿頂面螺栓孔縱裂的預應力混凝土軌枕數量達20%。

  1.1. 4軌枕頂面螺栓孔處橫裂(平行于鋼軌方向)

  69型軌枕和Ⅱ型枕都有這種裂縫出現。從調查結果看,大多數橫裂方向與列車運行方向一致,即出現于復線鐵路的單向運行區段。

  1.1.5 軌枕端部縱向裂縫

  這種縱向裂縫有的出現在軌枕端部頂面和底面,也有的出現在端部兩側,大致與鋼筋(鋼絲)平行。

  1.1.6 軌枕中部縱向裂縫

  這種縱向裂縫發生在軌枕中部的頂面和側面,平行于鋼筋方向,裂縫長度可達30~110mm,裂縫寬度約0.5~3mm,最大可達5mm.

  1.1.7 龜裂

  軌枕端部、中部的頂面或側面出現縱橫交錯、不規則的網狀裂縫。

  1.2 裂縫的表現

  (1)預應力混凝土軌枕產生裂縫較難避免。從七十、八十年代調查的69型軌枕和九十年代調查的Ⅱ型枕看,軌下及枕中的正負彎矩裂縫,沿螺栓孔等處出現的各種類型縱向裂縫均有發生,甚至坦贊鐵路的混凝土軌枕也有沿螺栓孔裂縫。

  1975 年筆者參加了對滬寧、京廣、東北各線的調查,被調查的軌枕共計51117根,縱裂軌枕總數為5450根,占10.6%。 1981年鐵道部曾組織對東北部分線路進行了分段調查,其縱裂、橫裂軌枕數量分別占調查區段軌構數量的11%、20%、37%、60%、83%不等。1991年鐵道部對20條干線的 112km線路的193888根Ⅱ型軌枕進行調查,共發現裂縫軌枕18582根,損傷率為9.6%,其中軌枕頂面沿螺栓孔縱裂,頂面和側面縱裂、枕中頂面橫裂分別占裂縫軌枕總數的33.8%、15%、38.1%。

  (2)包括沿螺栓孔縱裂在內的各類型縱向裂縫起初長度和寬度都很小。隨著時間推移,不論是運營線路上的軌枕還是未鋪設的備用軌枕,裂縫均存在不斷發展的趨勢,裂縫寬度從0.5mm—5mm不等,長度一直縱裂至兩端,直至貫通,造成劈裂。

  (3)雖不同型號軌枕產生裂縫情況沒有明顯區別,但不同廠家,不同時間生產的軌枕,包括在同一線路區段的不同廠家軌枕縱裂縫的表現卻有明顯區別。例如有一 J—l和S—2型軌枕混鋪地段,在同樣的鋪設條件,即線路的平、縱斷面,通過總重相同,J—1型枕雖比S—2型枕低一級,但傷損的根數,尤其是縱向裂縫卻少得多。但從總體來看,1968~1976年間生產的69型枕各類裂縫,特別是縱裂和龜裂的比例和程度要嚴重得多。

  2 混凝土軌枕裂縫的成因

  混凝土軌枕裂縫的生成可以從結構、工藝、材料等方面探討,也可從設計、制造、鋪設、使用等方面研究。在此,僅從物理、化學、力學的角度進行分析。

  2.1 力學因素

  混凝土軌枕所受彎矩的大小不僅與枕上動壓力有關,而且與枕下道碴支承狀態有關。原先設計規定鋪設和養護時應使軌枕中間部分掏空400rnm,掏空部分道碴頂面應低于枕底30mm,避免負彎矩過大而產生枕中上部橫裂。近年來要求中間不掏空,即中間應墊滿浮碴。設計時假設中間部分的支承反力應為軌下部分的 3/4(掏空時為0)。與一般的預應力混凝土制品不同的是軌枕的支承狀態隨著列車的運行及養護維修條件而不斷變化,一旦當支承狀態與枕上垂直動壓力力聯合作用引起的彎矩超過設計限值時,則軌枕的相應部分就會產生如圖1、圖2所示的裂縫。此外當預加應力偏大而脫模時混凝土強度又不足時,軌枕端部就會產生如圖 5、圖6所示的縱向裂縫;列車運行時對鋼軌的水平和縱向作用力和螺旋道釘引起的上拔力又會使軌枕螺栓道釘孔周圍產生如圖3、圖4所示的縱向裂縫和橫向裂縫。

  由于預應力混凝土軌枕橫向裂縫(軌下正彎矩和枕中正、負彎矩)在計算和試驗方面均已有諸多研究,而縱向裂縫的計算及試驗卻很少涉及。在此,僅對端部縱向裂縫(或稱水平裂縫)作一分析:

  根據清華大學研究,先張法高強鋼絲預應力混凝土梁,當預應力值較高時,沿梁高離開預應力筋一段距離,靠近中和軸附近,在梁端面上出現拉應力6Y,常引起端頭裂縫,如圖8所示。

  通過20余根梁的模擬試驗,建立了端面最大拉應力計算公式:6Ymax=k6 o

  式中:6 o一梁端橫截面上平均壓應力:6 o=N/A (A為梁端橫截面積,N為混凝土預壓力);

  k一應力系數,其變化規律可近似表達為:

  k=1/{18(e/h)2十0.25}

  式中:e一集中力距底邊的距離;h一為端部梁高;

  裂縫發生的位置C(裂縫與梁底面的距離):√eh

  梁的抗裂性驗算必須滿足下式要求:6Ymax≤rf t

  式中:f t一混凝土的抗拉強度;

  r一塑性系數(一般取1.7)

  將以上研究結果用來驗算預應力混凝土軌枕的端部拉應力,得出表l.

  由表1可見,預應力引起的軌枕端面最大水平拉應力6Ymax約為混凝土設計抗拉強度的75~90%,并為考慮塑性變形后的混凝土抗拉強度的50%,僅此單一因素,軌枕單面是不會產生縱向裂縫的。但當混凝土放張強度不足、溫差、干縮、堿集料反應等因素附加作用時,則易造成6Ymax≤ft (物理化學作用時塑性變形不起作用),從而引起縱向裂縫。此外,螺旋道釘上拔力較大時,與預加應力疊加,則容易造成釘孔縱裂。

  2.2 物理因素

  物理因素系指軌枕制造和鋪設、運營過程中受冷熱、干濕、凍融等的作用。當蒸汽養護過程中升溫很快,恒溫溫度很高時,由于混凝土中氣、水、水泥、砂石等不同材料熱膨脹系數不同,而混凝土初期結構強度又很低時,高溫使氣、水大大膨脹,造成混凝土內部結構缺陷,容易引起軌枕表面特別是端頭表面的混凝土龜裂,疏松。

[1] [2] [3]  下一頁

,預應力混凝土軌枕的裂縫及結構耐久性
22选五的开奖公告